Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A three-dimensional framework of bis[tris(ethylenediamine)zinc] tetraiodocadmate diiodide assisted by $\mathrm{N}-\mathrm{H} \cdots$. I hydrogen bonds

Oksana V. Nesterova, ${ }^{\text {a* }}$ Svitlana R. Petrusenko, ${ }^{\text {a }}$ Viktoria V. Dyakonenko, ${ }^{\text {b }}$ Oleg V. Shishkin ${ }^{\text {b }}$ and Wolfgang Linert ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Inorganic Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, Kiev 01033, Ukraine, ${ }^{\mathbf{b}}$ STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkov 61001, Ukraine, and ${ }^{\text {c }}$ Vienna University of Technology, Getreidemarkt 9/153, AC 1060, Vienna, Austria
Correspondence e-mail: sana@univ.kiev.ua

Received 27 February 2006
Accepted 12 May 2006
Online 15 June 2006
The title salt, $\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{8}\right)_{3}\right]_{2}\left[\mathrm{CdI}_{4}\right] \mathrm{I}_{2}$, conventionally abbreviated $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]_{2}\left[\mathrm{CdI}_{4}\right] \mathrm{I}_{2}$, where en is ethylenediamine, contains discrete $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ cations and $\left[\mathrm{CdI}_{4}\right]^{2-}$ anions with distorted octahedral and nearly tetrahedral geometries, respectively, as well as uncoordinated I^{-}ions. The cation and the free I^{-}anion lie on twofold rotation axes and the $\left[\mathrm{CdI}_{4}\right]^{2-}$ anion lies on a $\overline{4}$ axis in the space group $\overline{4} 2 d$. The structure exhibits numerous weak inter-ionic hydrogen bonds of two types, viz. $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}^{-}$(free ion) and $\mathrm{N}-\mathrm{H} \cdots$ $\mathrm{I}\left(\left[\mathrm{CdI}_{4}\right]^{2-}\right)$, which support the resulting three-dimensional framework.

Comment

It has been shown that the preparation of complexes from zero-valent metals or metal oxides is a fascinating and promising means for the production of heterometallic compounds of unusual stoichiometry and structure (Pryma et al., 2003; Nesterova et al., 2005). The reaction of zinc oxide with cadmium iodide and ammonium iodide in a dimethylformamide solution of ethylenediamine (en) in the open air, using a $\mathrm{ZnO}: \mathrm{CdI}_{2}: \mathrm{NH}_{4} \mathrm{I}$:en molar ratio of $2: 1: 4: 6$, gives colourless crystals of the title compound, $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]_{2}\left[\mathrm{CdI}_{4}\right] \mathrm{I}_{2}$, (I).

(I)

Single-crystal structure analysis confirms that (I) is an ionic compound built of discrete octahedral $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ cations and
tetrahedral $\left[\mathrm{CdI}_{4}\right]^{2-}$ and I^{-}anions, forming a three-dimensional framework by means of weak hydrogen bonds. The Cd atom lies on a $\overline{4}$ axis, while the cation and the free I^{-}ion both lie on twofold rotation axes. In the selected asymmetric unit (Fig. 1), the cation has a Δ configuration.

The $\mathrm{Zn}^{\mathrm{II}}$ atom in $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ is coordinated by six N atoms from three bidentate en ligands, with $\mathrm{Zn}-\mathrm{N}$ distances ranging from 2.171 (8) to 2.229 (8) \AA (Table 1). The coordination environment of the complex cation is distorted octahedral, as can be seen from the trans $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ angles, which vary from 166.9 (4) to 169.3 (3) ${ }^{\circ}$, and the cis $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ angles, which vary from 79.7 (4) to 95.1 (3). The observed bond distances and angles are in accordance with those found for the similar zinc(II) complexes $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]\left[\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right],\left[\mathrm{Zn}(\mathrm{en})_{3}\right]\left[\mathrm{Te}_{3}\right]$-0.5 en and $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ (Fu et al., 2004; Shreeve-Keyer et al., 1997; Neill et al., 1997). The Cd ${ }^{\text {II }}$ coordination environment

Figure 1
The main structural units in the structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

Figure 2
A view of the environment of the I^{-}anion, based on hydrogen bonds. [Symmetry codes: (i) $x,-1-y,-z$; (iv) $-1-x, y,-z$; (v) $-\frac{1}{2}-x, y$, $-\frac{1}{4}-z$; (vi) $-1-x,-\frac{1}{2}-y,-\frac{1}{4}+z$.]

Figure 3
A view of the $\left[\mathrm{CdI}_{4}\right]^{2-}$ environment, stabilized by hydrogen bonds. [Symmetry codes: (ii) $-x, y,-z$; (iii) $-x,-y, z$; (vii) $x,-y,-z$.]
has approximate tetrahedral symmetry. The $\mathrm{Cd}-\mathrm{I}$ bond length in the $\left[\mathrm{CdI}_{4}\right]^{2-}$ anion is approximately equal to the sum of the covalent radii for $\mathrm{Cd}(1.51 \AA)$ and $\mathrm{I}(1.33 \AA)$ atoms (Batsanov, 1991), and is typical of its type (Bailey \& Pennington, 1995; Nieuwenhuyzen et al., 1992; Kallel et al., 1981).

A complex system of hydrogen bonds links the ions of (I) into a three-dimensional framework. Each I^{-}anion is hydrogen bonded to three different $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ units (Fig. 2), while each $\left[\mathrm{CdI}_{4}\right]^{2-}$ unit is hydrogen bonded to four different $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ cations (Fig. 3). The non-coordinated I2 atom takes part in hydrogen bonding with the NH_{2} groups of en in the cations, being four-coordinated by $\mathrm{H}(\mathrm{N})$ atoms (Table 2). All four I atoms in the $\left[\mathrm{CdI}_{4}\right]^{2-}$ anion are two-coordinated by $\mathrm{H}(\mathrm{N})$ atoms, forming eight hydrogen bonds to $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ cations. The hydrogen bonds interlink the $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ and $\left[\mathrm{CdI}_{4}\right]^{2-}$ building blocks and I^{-}anions into a three-dimensional framework. The nearest $\mathrm{I} \cdots \mathrm{I}$ distance is $\mathrm{I} 1 \cdots \mathrm{I} 2^{\text {vii }}$ of 4.695 (5) \AA [symmetry code: (vii) $-y, x,-z$], indicating no specific interaction between I atoms.

The title salt represents a suitable system for a comparison of the strengths of two types of $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds. Thus, the bonds involving the free I^{-}anions are ca $0.11 \AA$ shorter than those involving the I atoms in the $\left[\mathrm{CdI}_{4}\right]^{2-}$ anion. Moreover, the mean value of all hydrogen bonds observed in $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]_{2}\left[\mathrm{CdI}_{4}\right] \mathrm{I}_{2}(3.81 \AA)$, compared with the mean value found in $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]_{2}\left[\mathrm{CdI}_{4}\right] \mathrm{I}_{2}(3.76 \AA)$ (Wieczorrek \& Tebbe, 1998), indicates donor properties for the NH_{2} group somewhat stronger in $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]^{2+}$ than in $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$.

Experimental

Zinc oxide ($0.2 \mathrm{~g}, 0.0025 \mathrm{~mol}$), $\mathrm{CdI}_{2}(0.455 \mathrm{~g}, 0.00125 \mathrm{~mol}), \mathrm{NH}_{4} \mathrm{I}$ $(0.72 \mathrm{~g}, 0.005 \mathrm{~mol})$, dimethylformamide (20 ml) and ethylenediamine
$(0.5 \mathrm{ml}, 0.0075 \mathrm{~mol})$ were heated to $323-333 \mathrm{~K}$ and stirred magnetically for about 50 min . The solution was filtered and propan-2-ol $(10 \mathrm{ml})$ was added to the resulting colourless solution. Colourless crystals of (I) suitable for single-crystal X-ray diffraction separated over a period of one day; these were washed with dry propan-2-ol and dried in vacuo at room temperature (yield $1.32 \mathrm{~g}, 78 \%$). An additional amount of product was obtained from the filtrate. Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{48} \mathrm{CdI}_{6} \mathrm{~N}_{12} \mathrm{Zn}_{2}$: C 10.6, H 3.5, Cd 8.2, I 55.8, N 12.3, Zn 9.6\%; found: C 10.6, H 3.7, Cd 8.3, I 55.4, N 12.5, Zn 9.6\%.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left[\mathrm{CdI}_{4}\right] \mathrm{I}_{2}$

$$
D_{x}=2.435 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$M_{r}=1365.16$
Mo $K \alpha$ radiation
Tetragonal, $I \overline{4} 2 d$
$a=14.803$ (2) \AA
$c=16.991$ (4) \AA
$V=3723.2(11) \AA^{3}$
$Z=4$
$\mu=6.84 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.4 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Siemens P3/PC diffractometer
825 reflections with $I>2 \sigma(I)$
$\theta / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.127, T_{\text {max }}=0.255$
3556 measured reflections
916 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0332 P)^{2}\right. \\
&+14.3589 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.51 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.62 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Absolute structure: Flack }(1983) \\
& \text { Flack parameter: }-0.07(7)
\end{aligned}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Cd1-I1	2.7934 (9)	Zn1-N1	2.186 (7)
Zn1-N2	2.171 (8)	Zn1-N3	2.229 (8)
$\mathrm{I} 1{ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{I} 1$	109.40 (2)	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 3{ }^{\text {iii }}$	79.9 (3)
$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{I} 1^{\text {ii }}$	109.61 (3)	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 3{ }^{\text {iii }}$	95.1 (3)
$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 2^{\text {iii }}$	98.0 (4)	N2-Zn1-N3	91.5 (3)
N2-Zn1-N1 ${ }^{\text {iii }}$	169.3 (3)	N1-Zn1-N3	94.9 (3)
$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 1$	91.4 (3)	N3 ${ }^{\text {iii }}-\mathrm{Zn} 1-\mathrm{N} 3$	166.9 (4)
$\mathrm{N} 1^{\text {iii }}-\mathrm{Zn} 1-\mathrm{N} 1$	79.7 (4)		

Symmetry codes: (i) $y,-x,-z$; (ii) $-x,-y, z$; (iii) $x,-y-\frac{1}{2},-z+\frac{1}{4}$.

Table 2
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2C $\cdots \mathrm{I} 2^{\text {iv }}$	0.90	2.90	$3.758(8)$	160
N2-H2D 2 I 2	0.90	2.92	$3.746(7)$	153
N1-H1D I^{i}	0.90	3.09	$3.904(9)$	150
N3-H3C $\cdots \mathrm{I} 1^{\text {ii }}$	0.90	2.99	$3.827(8)$	156

Symmetry codes: (i) $y,-x,-z$; (ii) $-x,-y, z$; (iv) $-y-1, x,-z$.

All H atoms were located in difference maps and then treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA, \mathrm{~N}-\mathrm{H}=0.90 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The absolute axis assignment (Jones, 1986) was established by means of the Flack (1983) parameter.

metal-organic compounds

Data collection: P3 (Siemens, 1989); cell refinement: P3; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1991); software used to prepare material for publication: SHELXL97.

This work was supported in part by the INTAS (Project No. 03-51-4532) and the 'Fonds zur Förderung der Wissenschaftlichen Forschung in Österreich' (Project No. 15874N03).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3008). Services for accessing these data are described at the back of the journal.

References

Bailey, R. D. \& Pennington, W. T. (1995). Acta Cryst. C51, 226-229. Batsanov, S. S. (1991). Zh. Neorg. Khim. 36, 3015-3037.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fu, A.-Y., Wang, D.-Q. \& Yu, T. (2004). Acta Cryst. E60, m1939-m1940. Jones, P. G. (1986). Acta Cryst. A42, 57.
Kallel, A., Bats, J. W. \& Daoud, A. (1981). Acta Cryst. B37, 676-677.
Neill, D., Riley, M. J. \& Kennard, C. H. L. (1997). Acta Cryst. C53, 701703.

Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. \& Raithby, P. R. (2005). Inorg. Chim. Acta, 358, 27252738.

Nieuwenhuyzen, M., Wen, H. \& Wilkins, C. J. (1992). Z. Anorg. Allg. Chem. 615, 143-148.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. \& Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426-1432.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shreeve-Keyer, J. L., Warren, C. J., Dhingra, S. S. \& Haushalter, R. C. (1997). Polyhedron, 16, 1193-1199.
Siemens (1989). P3. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
Siemens (1991). XDISK and XP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
Wieczorrek, C. \& Tebbe, K.-F. (1998). Acta Cryst. C54, 1804-1807.

