Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

A three-dimensional framework of bis[tris(ethylenediamine)zinc] tetraiodocadmate diiodide assisted by N—H···I hydrogen bonds

Oksana V. Nesterova,^a* Svitlana R. Petrusenko,^a Viktoria V. Dyakonenko,^b Oleg V. Shishkin^b and Wolfgang Linert^c

^aDepartment of Inorganic Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, Kiev 01033, Ukraine, ^bSTC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkov 61001, Ukraine, and ^cVienna University of Technology, Getreidemarkt 9/153, AC 1060, Vienna, Austria

Correspondence e-mail: sana@univ.kiev.ua

Received 27 February 2006 Accepted 12 May 2006 Online 15 June 2006

The title salt, $[Zn(C_2N_2H_8)_3]_2[CdI_4]I_2$, conventionally abbreviated $[Zn(en)_3]_2[CdI_4]I_2$, where en is ethylenediamine, contains discrete $[Zn(en)_3]^{2+}$ cations and $[CdI_4]^{2-}$ anions with distorted octahedral and nearly tetrahedral geometries, respectively, as well as uncoordinated I⁻ ions. The cation and the free I⁻ anion lie on twofold rotation axes and the $[CdI_4]^{2-}$ anion lies on a $\overline{4}$ axis in the space group $I\overline{4}2d$. The structure exhibits numerous weak inter-ionic hydrogen bonds of two types, viz. N–H···I⁻(free ion) and N–H···I($[CdI_4]^{2-}$), which support the resulting three-dimensional framework.

Comment

It has been shown that the preparation of complexes from zero-valent metals or metal oxides is a fascinating and promising means for the production of heterometallic compounds of unusual stoichiometry and structure (Pryma *et al.*, 2003; Nesterova *et al.*, 2005). The reaction of zinc oxide with cadmium iodide and ammonium iodide in a dimethyl-formamide solution of ethylenediamine (en) in the open air, using a ZnO:CdI₂:NH₄I:en molar ratio of 2:1:4:6, gives colourless crystals of the title compound, $[Zn(en)_3]_2[CdI_4]I_2$, (I).

Single-crystal structure analysis confirms that (I) is an ionic compound built of discrete octahedral $[Zn(en)_3]^{2+}$ cations and

tetrahedral $[CdI_4]^{2-}$ and I^- anions, forming a three-dimensional framework by means of weak hydrogen bonds. The Cd atom lies on a $\overline{4}$ axis, while the cation and the free I^- ion both lie on twofold rotation axes. In the selected asymmetric unit (Fig. 1), the cation has a Δ configuration.

The Zn^{II} atom in $[Zn(en)_3]^{2+}$ is coordinated by six N atoms from three bidentate en ligands, with Zn—N distances ranging from 2.171 (8) to 2.229 (8) Å (Table 1). The coordination environment of the complex cation is distorted octahedral, as can be seen from the *trans* N—Zn—N angles, which vary from 166.9 (4) to 169.3 (3)°, and the *cis* N—Zn—N angles, which vary from 79.7 (4) to 95.1 (3)°. The observed bond distances and angles are in accordance with those found for the similar zinc(II) complexes $[Zn(en)_3][Ni(C_4N_2S_2)_2]$, $[Zn(en)_3][Te_3]$ ·-0.5en and $[Zn(en)_3](NO_3)_2$ (Fu *et al.*, 2004; Shreeve-Keyer *et al.*, 1997; Neill *et al.*, 1997). The Cd^{II} coordination environment

Figure 1

The main structural units in the structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

Figure 2

A view of the environment of the I⁻ anion, based on hydrogen bonds. [Symmetry codes: (i) x, -1 - y, -z; (iv) -1 - x, y, -z; (v) $-\frac{1}{2} - x$, y, $-\frac{1}{4} - z$; (vi) -1 - x, $-\frac{1}{2} - y$, $-\frac{1}{4} + z$.]

Figure 3

A view of the $[CdI_4]^{2-}$ environment, stabilized by hydrogen bonds. [Symmetry codes: (ii) -x, y, -z; (iii) -x, -y, z; (vii) x, -y, -z.]

has approximate tetrahedral symmetry. The Cd-I bond length in the $[CdI_4]^{2-}$ anion is approximately equal to the sum of the covalent radii for Cd (1.51 Å) and I (1.33 Å) atoms (Batsanov, 1991), and is typical of its type (Bailey & Pennington, 1995; Nieuwenhuyzen et al., 1992; Kallel et al., 1981).

A complex system of hydrogen bonds links the ions of (I) into a three-dimensional framework. Each I⁻ anion is hydrogen bonded to three different $[Zn(en)_3]^{2+}$ units (Fig. 2), while each $[CdI_4]^{2-}$ unit is hydrogen bonded to four different $[Zn(en)_3]^{2+}$ cations (Fig. 3). The non-coordinated I2 atom takes part in hydrogen bonding with the NH₂ groups of en in the cations, being four-coordinated by H(N) atoms (Table 2). All four I atoms in the $[CdI_4]^{2-}$ anion are two-coordinated by H(N) atoms, forming eight hydrogen bonds to $[Zn(en)_3]^{2+}$ cations. The hydrogen bonds interlink the $[Zn(en)_3]^{2+}$ and [CdI₄]²⁻ building blocks and I⁻ anions into a three-dimensional framework. The nearest I...I distance is I1...I2^{vii} of 4.695 (5) Å [symmetry code: (vii) -y, x, -z], indicating no specific interaction between I atoms.

The title salt represents a suitable system for a comparison of the strengths of two types of $N-H \cdots I$ hydrogen bonds. Thus, the bonds involving the free I^- anions are ca 0.11 Å shorter than those involving the I atoms in the $[CdI_4]^{2-}$ anion. Moreover, the mean value of all hydrogen bonds observed in $[Zn(en)_3]_2[CdI_4]I_2$ (3.81 Å), compared with the mean value found in [Cd(en)₃]₂[CdI₄]I₂ (3.76 Å) (Wieczorrek & Tebbe, 1998), indicates donor properties for the NH₂ group somewhat stronger in $[Cd(en)_3]^{2+}$ than in $[Zn(en)_3]^{2+}$.

Experimental

Zinc oxide (0.2 g, 0.0025 mol), CdI₂ (0.455 g, 0.00125 mol), NH₄I (0.72 g, 0.005 mol), dimethylformamide (20 ml) and ethylenediamine (0.5 ml, 0.0075 mol) were heated to 323-333 K and stirred magnetically for about 50 min. The solution was filtered and propan-2-ol (10 ml) was added to the resulting colourless solution. Colourless crystals of (I) suitable for single-crystal X-ray diffraction separated over a period of one day; these were washed with dry propan-2-ol and dried in vacuo at room temperature (yield 1.32 g, 78%). An additional amount of product was obtained from the filtrate. Analysis calculated for C12H48CdI6N12Zn2: C 10.6, H 3.5, Cd 8.2, I 55.8, N 12.3, Zn 9.6%; found: C 10.6, H 3.7, Cd 8.3, I 55.4, N 12.5, Zn 9.6%.

Crystal data

$Zn(C_2H_8N_2)_3][CdI_4]I_2$	$D_{\rm x} = 2.435 {\rm Mg} {\rm m}^{-3}$
$A_r = 1365.16$	Mo $K\alpha$ radiation
Tetragonal, I42d	$\mu = 6.84 \text{ mm}^{-1}$
a = 14.803 (2) Å	T = 294 (2) K
= 16.991 (4) Å	Block, colourless
$V = 3723.2 (11) \text{ Å}^3$	$0.4 \times 0.2 \times 0.2 \text{ mm}$
Z = 4	

825 reflections with $I > 2\sigma(I)$

2 standard reflections

every 95 reflections

intensity decay: 5%

 $R_{\rm int} = 0.034$

 $\theta_{\rm max} = 25.1^{\circ}$

Data collection

Siemens P3/PC diffractometer $\theta/2\theta$ scans Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.127, \ T_{\max} = 0.255$ 3556 measured reflections 916 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0332P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.027$	+ 14.3589 <i>P</i>]
$wR(F^2) = 0.062$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
916 reflections	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
76 parameters	$\Delta \rho_{\rm min} = -0.62 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Absolute structure: Flack (1983)
	Flack parameter: -0.07 (7)

Table 1

Selected geometric parameters (Å, °).

Cd1-I1 Zn1-N2	2.7934 (9) 2.171 (8)	Zn1-N1 Zn1-N3	2.186 (7) 2.229 (8)
$\begin{array}{l} I1^{i}-Cd1-I1\\ I1-Cd1-I1^{ii}\\ N2-Zn1-N2^{iii}\\ N2-Zn1-N1^{iii}\\ N2-Zn1-N1\\ N1^{iii}-Zn1-N1 \end{array}$	109.40 (2) 109.61 (3) 98.0 (4) 169.3 (3) 91.4 (3) 79.7 (4)	$\begin{array}{c} N2 - Zn1 - N3^{iii} \\ N1 - Zn1 - N3^{iii} \\ N2 - Zn1 - N3 \\ N1 - Zn1 - N3 \\ N3^{iii} - Zn1 - N3 \end{array}$	79.9 (3) 95.1 (3) 91.5 (3) 94.9 (3) 166.9 (4)

Symmetry codes: (i) y, -x, -z; (ii) -x, -y, z; (iii) x, $-y - \frac{1}{2}$, $-z + \frac{1}{4}$.

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$ $D - H$		$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N_2 H_2 C I_2^{iv} = 0.00$	2 00		
$N_2 = H_2 C \cdots H_2$ 0.90 $N_2 = H_2 D \cdots H_2$ 0.90 $N_1 = H_1 D \cdots H_1^{i}$ 0.90 $N_3 = H_3 C \cdots H_1^{ii}$ 0.90	2.90 2.92 3.09 2.99	3.758 (8) 3.746 (7) 3.904 (9) 3.827 (8)	160 153 150 156

Symmetry codes: (i) y, -x, -z; (ii) -x, -y, z; (iv) -y - 1, x, -z.

All H atoms were located in difference maps and then treated as riding atoms, with C-H = 0.97 Å, N-H = 0.90 Å and $U_{iso}(H)$ = $1.2U_{eq}(C,N)$. The absolute axis assignment (Jones, 1986) was established by means of the Flack (1983) parameter.

Data collection: *P3* (Siemens, 1989); cell refinement: *P3*; data reduction: *XDISK* (Siemens, 1991); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1991); software used to prepare material for publication: *SHELXL97*.

This work was supported in part by the INTAS (Project No. 03–51–4532) and the 'Fonds zur Förderung der Wissenschaftlichen Forschung in Österreich' (Project No. 15874-N03).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3008). Services for accessing these data are described at the back of the journal.

References

Bailey, R. D. & Pennington, W. T. (1995). Acta Cryst. C51, 226–229. Batsanov, S. S. (1991). Zh. Neorg. Khim. 36, 3015–3037.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fu, A.-Y., Wang, D.-Q. & Yu, T. (2004). Acta Cryst. E60, m1939–m1940. Jones, P. G. (1986). Acta Cryst. A42, 57.
- Kallel, A., Bats, J. W. & Daoud, A. (1981). Acta Cryst. B37, 676–677.
- Neill, D., Riley, M. J. & Kennard, C. H. L. (1997). Acta Cryst. C53, 701– 703.
- Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2005). *Inorg. Chim. Acta*, **358**, 2725– 2738.
- Nieuwenhuyzen, M., Wen, H. & Wilkins, C. J. (1992). Z. Anorg. Allg. Chem. 615, 143–148.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). *Eur. J. Inorg. Chem.* pp. 1426–1432.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Shreeve-Keyer, J. L., Warren, C. J., Dhingra, S. S. & Haushalter, R. C. (1997). Polyhedron, 16, 1193–1199.
- Siemens (1989). P3. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
- Siemens (1991). XDISK and XP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
- Wieczorrek, C. & Tebbe, K.-F. (1998). Acta Cryst. C54, 1804-1807.